a2 United States Patent

He et al.

US009479408B2

US 9,479,408 B2
*QOct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(62)

(1)

(52)

(58)

DETECTING AND ALERTING
PERFORMANCE DEGRADATION DURING
FEATURES RAMP-UP

Applicant: LinkedIn Corporation, Mountain
View, CA (US)

Inventors: David Q. He, Cupertino, CA (US);

Ruixuan Hou, Sunnyvale, CA (US);

Michael C. Chang, Fremont, CA (US);

Badrinath Sridharan, Saratoga, CA

(US)

Assignee: LinkedIn Corporation, Mountain

View, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/951,026
Filed: Nov. 24, 2015

Prior Publication Data

US 2016/0285714 Al Sep. 29, 2016

Related U.S. Application Data

Division of application No. 14/669,502, filed on Mar.
26, 2015, now Pat. No. 9,225,625.

Int. CL.
GO6F 15/16 (2006.01)
HO4L 1226 (2006.01)
(Continued)
U.S. CL
CPC ..o HO4L 43/08 (2013.01); HO4L 29/06

(2013.01); HO4L 29/08072 (2013.01)
Field of Classification Search
CPC e HO4L 29/06; HO04L 29/08072

709/203, 217, 220, 224, 228; 726/11,
726/13
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,112,471 B2* 2/2012 Wei ..o HO4L 67/1008
709/202

9,225,625 B1* 12/2015 He ..ccoooovvvvviecenns HO4L 43/16
(Continued)

FOREIGN PATENT DOCUMENTS

WO
WO
WO

WO 01/84273 A2
WO 2011/097328 A2
WO 2012/115981 Al

11/2001
8/2011
8/2012

OTHER PUBLICATIONS

European Patent Office, Search Report in application No. PCT/
US2016/018938, dated Jun. 13, 2016, 13 pages.

(Continued)

Primary Examiner — Khanh Dinh
(74) Attorney, Agent, or Firm — Hickman Palermo
Becker Bingham LLP

(57) ABSTRACT

Computerized techniques are described for detecting per-
formance degradation during features ramp up. A first ver-
sion of web content is sent to first client devices. The first
version of the web content lacks a particular feature. First
performance data that indicates performance of each first
client device with respect to processing the web content is
received. A second version of the web content is sent to
second client devices. The second version of the web content
has the particular feature. Second performance data that
indicates performance of each second client device with
respect to processing the web content is received. The first
performance data is compared with the second performance
data to determine a difference between a processing metric
associated with the first version of the web content and a
processing metric associated with the second version of the
web content.

17 Claims, 8 Drawing Sheets

4 i
SEMD, TOFRST CLENT DRVICES, FRETYERSION OF WEBCOMTENT THATDOES |
NOTHRVEA PARNCULARFEATLRE |

l

2
FROMEACH OF PRET CLENT DBV DES, RECEVE FRSTPERFORMAKOE [IATA THAT)
CRVANCE OF EACH TPROCESSHG HE
WEBOONTENT

20
SENG, TOSECOMD CLENTDEVICES THAT ARE DFFERENT THAN THE FRBT OLENT)
DEVICES, & SECONDVERBION OF THEWES CONTENTTHAT HAS THE PARTCULAR

|

et
FROMERCH OF THE SECOND CLENTDEVICES, RECEVE SECOMD PERF ORMANCE
DATA THAT NDICA TES PERFORMANCE OF EACH SECORDCLIENT DEVICEAT
PROCESENG THE WEB DONTENT

l

&
COMPARE THE FIRST PERF ORMINGE DATAWITH THE SECOND PERF ORMANCE
PR T ¥ PR SSUCBTED
fdl AT

HOTHE PROC SSOCITED Wi THE
SECONDVERSION

US 9,479,408 B2

Page 2
(51) Int. CL 2012/0226804 Al* 9/2012 Rajacccoeoee. HO041. 43/028
HO4L 29/08 (2006.01) 709/224
HO4L 29/06 (2006.01) 2013/0054792 Al 2/2013 Sharaf
2013/0166634 Al 6/2013 Holland
(56) References Cited

U.S. PATENT DOCUMENTS

2003/0172163 Al* 9/2003 Fujitaccooenen. HO4L 67/1008
709/226
2011/0137973 Al1* 6/2011 Wei ..o HO4L 67/1008
709/202

OTHER PUBLICATIONS

European Claims in application No. PCT/US2016/018938, dated
Jun. 2016, 3 pages.

* cited by examiner

US 9,479,408 B2

Sheet 1 of 8

Oct. 25,2016

U.S. Patent

=
SMENANGD

S5

b8

N

1] _
AONY ARG A

BN SIE T
| DNISSI00N

=

OGS

- MORSHRA LSS

L .}»_\

bl

by
e 001 EL

-
SAS

U.S. Patent Oct. 25, 2016 Sheet 2 of 8 US 9,479,408 B2

CONTENT TRATOORS

SO

O }

| TO SECOMD € zxsg“ﬁs‘w f}%??”swg
SDER & SECOMDVERBIONOF Ww W eu \:"g

iy rrrarssnrsensserd

{

AR T

; HETERY FERENGE BETWERN A PROGESHRNG METRIC A5

YT THEFRETVERGINAND THE B ?E{\é EHRNG <>‘§ TR SSSOCIRTED BT
SECORDY BRSO

FiG. 2

US 9,479,408 B2

Sheet 3 of 8

Oct. 25, 2016

U.S. Patent

150434

SIALL
O

£ i

U.S. Patent

Oct. 25, 2016

Sheet 4 of 8 US 9,479,408 B2

?

T HAY m FEATURE /
DAL TIME OF WES CONTENT THAT HAS FEATURE
ATURE I3 DISABLED

‘X.‘EN“{ NSTRUMENTATIONTQ

a0

FROM T

TRANG

I K«\‘,\ Y

ST HAS GONT

5 \.‘E THANG BERY
N SN CLASSIFE

ROF CLERT

T YDA T
T.i{";.\ < 3..‘33‘:{: et

.i».

GENERATE ALERT

.§:§{3, 4

US 9,479,408 B2

40

A0 S THOW
Cve

S840 S0

£

L

Sheet 5 of 8

. el

Oct. 25, 2016

U.S. Patent

B

Mo OGS ELSAS

US 9,479,408 B2

9 94

0 LN LINOD AE03E

.

Sheet 6 of 8

[ONEIONT)) \ , :

OAY TS50 OIS - DAOM LIN] ONISEI00Hd DAOM LN

AM.Lh & ﬁ.ﬂ._x 104 aN3S I0Wd HIAHIS L3N0 35w
: ES 05 013

Oct. 25, 2016

U.S. Patent

009 AN

US 9,479,408 B2

Sheet 7 of 8

Oct. 25, 2016

U.S. Patent

5 Bupsioy

& Duuacyy

= BUsIsTg

7 Buing § Busaaoyy

g LawHO

ALY

epesieny —e—
B DI

1REGNRE —H/—

I &

R

A

M 5€

-

£ 9O

g Bunaic g

& Fupnioyy © Duacyy

7 a0y L Disgaoy

W LHYHD

7, G0y

speabag —e—
FUCHU

RSB —a—

US 9,479,408 B2

Sheet 8 of 8

Oct. 25, 2016

U.S. Patent

e
LUETSY

HedOht L 3N

O

(oS

ATYH N
LY ORNINNGD

B

............. -1

H3AH3E

1

M,

30 LNdghl

US 9,479,408 B2

1
DETECTING AND ALERTING
PERFORMANCE DEGRADATION DURING
FEATURES RAMP-UP

CROSS-REFERENCE TO RELATED
APPLICATIONS; BENEFIT CLAIM

This application is a Divisional of U.S. patent application
Ser. No. 14/669,502, filed Mar. 26, 2015; the entire contents
of which are hereby incorporated by reference for all pur-
poses as if fully set forth herein. The applicants hereby
rescind any disclaimer of claim scope in the parent appli-
cation or the prosecution history thereof and advise the
USPTO that the claims in this application may be broader
than any claim in the parent application.

FIELD OF THE DISCLOSURE

The present disclosure relates to application servers and,
more particularly, to detecting and alerting performance
degradation during features ramp up.

BACKGROUND

Despite laboratory testing, the performance impact of a
new web application feature may be difficult to predict prior
to release. One approach to tracking performance of a new
web application feature is to focus on the impact that feature
may have on servers that provide the web application.
However, the impact that the new feature may have on client
devices is entirely ignored.

One approach to monitoring performance degradation is
to compare overall performance data as observed before and
after general release of a new feature. However, this
approach is not well suited to sophisticated deployment
techniques. Additionally, this approach would be unaware
that some application users may be served a variant of an
application while other simultaneous users are not served the
variant.

A result of such an approach is that observation of
performance degradation of a not widely used variant may
be lost within statistical measurements of a greater audience
of a generally available application. An inability to isolate
variant performance is exacerbated by the possibility of a
separate variant for each of multiple new features.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is block diagram that depicts a web system for
detecting performance degradation during features ramp up,
in an embodiment;

FIG. 2 is a flow diagram that depicts a process that detects
performance degradation during features ramp up, in an
embodiment;

FIG. 3 is a block diagram that depicts a web system for
detecting and alerting performance degradation during fea-
tures ramp up, in an embodiment;

FIG. 4 is a flow diagram that depicts a process that detects
and alerts performance degradation during features ramp up,
in an embodiment;

FIG. 5 is a block diagram that depicts a web system for
detecting and alerting performance degradation during fea-
tures ramp up, in an embodiment;

FIG. 6 depicts a timeline of phases of web page loading,
in an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 depicts charts of performance degradation during
features ramp up, in an embodiment;

FIG. 8 depicts a computer system upon which an embodi-
ment may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

General Overview

Computerized techniques are described herein for detect-
ing performance degradation during features ramp up. In an
embodiment a first version of web content is sent to first
client devices. The first version of the web content lacks a
particular feature. First performance data that indicates
performance of each first client device with respect to
processing the web content is received. A second version of
the web content is sent to second client devices. The second
version of the web content has the particular feature. Second
performance data that indicates performance of each second
client device with respect to processing the web content is
received. The first performance data is compared with the
second performance data to determine a difference between
a processing metric associated with the first version of the
web content and a processing metric associated with the
second version of the web content. Sequential order of
delivery of content versions is not necessarily imposed.
Different content versions may be concurrently sent to
different clients.

In a related embodiment, a deployment having a feature
and client instrumentation to measure and report load time
of web content that has the feature is received. The feature
is initially disabled. The feature is enabled for a, perhaps
initially empty, subset of client users. Client users are
repeatedly added to the subset. Timing reports from the
client instrumentation are received. Each report has a con-
tent load duration and a classifier of a client user. The
classifier is processed to determine whether the feature is
enabled for the client user. Based on the timing reports, a
degradation degree is calculated that statistically quantifies
an additional duration that clients spend loading the web
content if the feature is enabled for the client user. An alert
is sent if the degradation degree exceeds a threshold.

System Overview

FIG. 1 is a block diagram that depicts a web system 100
for detecting performance degradation during releases of
features, in an embodiment. Web system 100 includes web
content 110, client devices 121-122, and computing device
150. Computing device 150 may be a rack server or other
networked computer configured to receive and process per-
formance telemetry.

Each of client devices 121-122 may be a personal com-
puter (PC), a smartphone, or any other networked computer
capable of hosting a web client application, such as a web
browser or a dedicated client application, that loads web
content and sends performance data that regards the loading.

US 9,479,408 B2

3

Each of client devices 121-122 may be representative of a
group of many client devices.

Web content 110 is a document that contains content, such
as hypertext markup language (HTML). The content of web
content 110 may be dynamically generated or static. Copies
of web content 110 may be sent to client devices by, in this
example, a web server hosted by a server computer (not
depicted in FIG. 1). Each of client devices 121-122 sends a
request for web content 110 to the web server over a
communication network such as a local area network or an
internetwork such as the global Internet.

Web content 110 has two versions that the web server may
send in response to a request from a client device. These two
versions differ according to a feature. First version 115 does
not have feature 118. Second version 116 has feature 118.
Although only one web page, two versions, and one feature
are shown, an embodiment may have more of these com-
ponents.

Feature 118 may be data that affects a visual artifact such
as a widget or a decoration, a behavior such as a script, a
combination of these, or any other meaningful difference in
the content of web content 110 whose presence can impact
the performance of a client device.

What mechanism causes the performance impact depends
on the implementation of feature 118. Feature 118 may
include more content that makes second version 116 a bigger
payload to generate, transfer, and load. Feature 118 may add
behaviors that make second version 116 computationally
more expensive to load. Alternatively, feature 118 may
improve the performance of second version 116.

Which version of web content 110 is sent by the web
server may depend on which of client devices 121-122
issues the request. Criteria that the web server uses to choose
which version to send depends on the implementation.
However, for continuity of user experience, the web server
may be configured to repeatedly send the same version in
response to repeated requests from a same client device. In
this example, client device 121 receives first version 115,
and client device 122 receives second version 116. Sequen-
tial order of delivery by the web server of versions 115-116
is not necessarily imposed. The web server may concur-
rently send content to clients 121-122 and other clients.

Because client devices 121-122 receive different versions
of web content 110, even under otherwise identical condi-
tions, the performance of client devices 121-122 while
processing web content 110 may differ. An embodiment may
observe this performance difference. In this example, the
performance difference is observed by computing device
150, which receives performance data from client devices
121-122 over a communication network such as the global
Internet.

During operation, client device 121 loads first version 115
and then sends performance data 141, which regards that
loading, to computing device 150. Likewise, client device
122 loads second version 116 and then sends performance
data 142, which regards that loading, to computing device
150.

Because many other client devices may receive and
process either of versions 115-116, computing device 150
receives performance data 141-142 from many client
devices. Computing device 150 compares performance data
141 with performance data 142 to determine a difference
between processing metrics 131-132, which respectively
regard versions 115-116.

Processing metrics 131-132 may measure computational
effort. For example, computing device 150 may determine
that processing of second version 116 consumes more clock

10

15

20

25

30

35

40

45

50

55

60

65

4

time, processor cycles, memory, or energy. Computing
device 150 may determine that processing of second version
116 causes more virtual memory swapping, client cache
thrashing, or disk usage.

Processing metrics 131-132 may instead measure human
factors. For example, computing device 150 may determine
that processing of second version 116 causes more screen
flicker or induces more voluntary abandonment by a user of
an artifact such as a web page or a virtual shopping cart.

With the difference between processing metrics 131-132
determined, decisions based on the difference may be made.
A tactical decision may be automatic, such as alerting a
significant difference. A tactical decision may be manual,
such as ramping down or redefining feature 118. An extreme
difference may be grounds for a strategic decision, such as
withdrawal of feature 118 or delay of an application release.

Process Overview

FIG. 2 is a flow diagram that depicts actions performed to
detect performance degradation during features ramp-up, in
an embodiment. Although these actions are discussed with
reference to web system 100, these actions may be per-
formed by other embodiments.

In step 210, web system 100 sends first version 115 of web
content 110 to a first plurality of client devices, including
client device 121. First version 115 does not include feature
118. Sending of web content 110 to a client device may be
in response to a request by that client device. However, an
implementation need not involve a request. The sending may
occur according to a transport protocol such as hypertext
transfer protocol (HTTP).

In step 220, computing device 150 receives, from each
client device of the first plurality of client devices, perfor-
mance data 141 that indicates performance of each of those
client devices with respect to processing first version 115.
Client device 121 may have a web browser or a dedicated
client application that executes a script included in web
content 110. The script may gather performance data such as
time profiling and resource consumption. Client device 121
may have a dedicated application instead of a web browser
and script. In either case, performance data may be sent
according to a transport protocol, such as HTTP.

Steps 230 and 240 proceeds similar to respective steps
210 and 220. However, the first plurality of client devices,
first version 115, and performance data 141 are not involved.
Instead, performance data 142, second version 116, and a
second plurality of client devices, including client device
122, respectively perform similar roles.

Finally in step 250, computing device 150 compares
performance data 141 with performance data 142 to deter-
mine a difference between processing metric 131 associated
with first version 115 and processing metric 132 associated
with second version 116. For example, computing device
150 may determine that processing of second version 116
consumes more computational resources or otherwise
impacts a user experience.

Alert Overview

FIG. 3 is a block diagram that depicts a web system 300
for alerting performance degradation during releases of
features, in an embodiment. Web system 300 may be an
implementation of web system 100, although web system
100 may have other implementations. Web system 300
includes deployment 312, client users 321-322, and com-
puting device 350.

US 9,479,408 B2

5

Computing device 350 may be an implementation of
computing device 150, although computing device 150 may
have other implementations. Computing device 350 may be
a rack server or other networked computer configured to
receive and process performance telemetry and send alerts.

Each of client users 321-322 may use a web browser or a
dedicated client application running on a client device, such
as a PC or smartphone, which may be an implementation of
client devices 121-122. Each of client users 321-322 may be
representative of many similar client users.

Although in this example each of client users 321-322 is
an end user of a web browser or a dedicated client applica-
tion, other embodiments may substitute other types of cli-
ents in place of client users 321-322. For example in another
embodiment, any of client users 321-322 may be an end user
of a dedicated application that is not a web browser but
nonetheless acts as a client of a web application.

In yet another example, any of client users 321-322 is not
an end user but rather a user agent. The user agent may be
either software, such as a web browser or a dedicated client
application, or hardware, such as a mobile device. An
embodiment that implements client users 321-322 as user
agents might be unable to discriminate amongst different
end users that share a user agent, such as a laptop of a
household. Likewise, such an embodiment may be unable to
recognize an end user that uses different user agents, such as
a workstation computer in an office and a smartphone while
commuting. Deployment 312 may be a software release,
such as a web application installation. Deployment 312 runs
on a web server or other middleware that is hosted by a
server computer, such as a rack server. Deployment 312
includes web content 310, which may be an implementation
of web content 110. Web content 310 includes feature 318
and client instrumentation 316.

Although only one feature is shown, web system 300 may
have many features. For example, a web page may have
many features, and a feature may be part of many web pages.
Web system 300 may independently measure and report
performance degradation of each of many distinct features,
even if the distinct features are at different stages of ramp up.

Feature 318 may be an implementation of feature 118 and
may include artifacts, such as scripts and HTML elements.
Feature 318 is initially disabled. While feature 318 is
disabled, its implementation machinery is either not deliv-
ered to web clients or is delivered but suppressed so as not
to execute or render in a web client.

Client instrumentation 316 includes logic, such as
JavaScript, that a web client may execute to measure a page
load time of web content 310. Page load time is a perfor-
mance metric for evaluating a user experience during release
of a feature. Delay of page loading by one second may cause
decreases in page views, customer satisfaction, and sale
conversions of approximately ten percent. FIG. 3 shows
client instrumentation 316 as part of web content 310, which
is appropriate if client instrumentation 316 is embeddable,
such as JavaScript in a web page. However, client instru-
mentation 316 may instead be logic deployed within a
dedicated client application and perhaps installed along with
the dedicated client application before web content 310 is
sent.

Client instrumentation 316 may measure other dimen-
sions such as memory usage or screen flicker. After web
content 310 has loaded in a web client, client instrumenta-
tion 316 generates and sends timing report 340 to computing
device 350.

Timing report 340 includes a page load duration that
indicates an amount of time spent loading web content 310

10

15

20

25

30

35

40

45

50

55

60

65

6

into a web client. Timing report 340 also includes a user
classifier that either directly or indirectly indicates whether
feature 318 is enabled for a client user. Timing report 340
may include other metrics such as memory usage or screen
flicker.

If feature 318 is enabled for a client user, then computing
device 350 classifies the client user as a member of subset
320. The user classifier may be a flag that directly indicates
that the client user is in subset 320. Alternatively, the user
classifier may be data that computing device 350 may
process to determine whether a client user is in subset 320
and has feature 318 enabled. For example, the user classifier
may be a user identifier, a browser fingerprint, a device
fingerprint, an internet protocol (IP) address, a session
identifier, or an individualized cookie. Initially subset 320
may be empty, in which case feature 318 is disabled for all
client users. At times web system 300 may select client users
for inclusion in subset 320 and enablement of feature 318.

In operation, computing device 350 receives many timing
reports 340 from many client users 321-322, of which only
some are in subset 320. Computing device 350 processes the
many timing reports 340 to calculate a degradation degree
330 that statistically quantifies the extra time that web
clients spend loading web content 310. For example the
degradation degree may measure a difference between an
average time spent loading web content 310 when feature
318 is enabled versus an average time when feature 318 is
disabled. If computing device 350 detects that the degrada-
tion degree exceeds a threshold 332, then computing device
350 sends an alert 334.

Alert Process

FIG. 4 is a flow diagram that depicts actions performed to
alert performance degradation during features ramp-up, in
an embodiment. Although these actions are discussed with
reference to web system 300, these actions may be per-
formed by other embodiments.

In step 410, a deployment host, such as a web server,
receives and serves deployment 312 having feature 318 and
client instrumentation 316 that, when executed by a client
device, such as in a web client, measures and reports page
load time of web content 310 that has feature 318. Feature
318 is initially disabled.

Subset 320 has client users for which feature 318 is
enabled. Although subset 320 is initially empty, in step 420
web system 300 enables feature 318 as a preface to adding
client users to subset 320.

In step 430, web system 300 repeatedly adds client users
to subset 320. For example, feature 318 is enabled for client
user 322 because web system 300 adds client user 322 to
subset 320.

In step 440, client instrumentation 316 sends timing
report 340 to computing device 350. Timing report 340
indicates an amount of time that a web client spent loading
web content 310. Timing report 340 also has a classifier of
a client user.

In step 450, computing device 350 processes the classifier
to determine whether feature 318 is enabled for the client
user that sent timing report 340. Computing device 350 may
determine whether or not a client user is in subset 320.

In some embodiments, implementation of step 450 may
require some integration between computing device 350 and
either client instrumentation 316 or a web server. An
embodiment that does not implement step 450 may none-
theless proceed to step 460. An embodiment that does not
perform step 450 might determine degradation degree 330

US 9,479,408 B2

7

with less accuracy. For example, an embodiment that per-
forms step 450 may determine degradation degree 330 as
fifty percent degradation for feature-enabled client users.
Whereas for the same scenario, an embodiment that does not
perform step 450 may only be able to determine a degra-
dation of five percent for all client users, regardless of
feature enablement.

Per step 440, computing device 350 receives timing
reports 340 from potentially many client users, of which
only some have feature 318 enabled. In step 460, based on
the many timing reports 340, computing device 350 calcu-
lates a degradation degree 330 that statistically quantifies an
additional duration that browsers spend loading web content
310 if feature 318 is enabled for a client user.

From timing report 340, computing device 350 may
calculate an average or a quantile, such as a median, of page
load times during a given period for all client users in or not
in subset 320. Demand for web content 310 may be naturally
subject to a diurnal cycle. Computing device 350 may
calculate a daily moving average or daily moving median of
page load times.

Statistics involving a moving interval may require that
computing device 350 be able to retain historical measure-
ments. History retention also facilitates trend visualization,
such as with a plotted time series. An implementation that
lacks history may be limited to presenting only an instan-
taneous degradation degree 330. Absence of history can
hinder trend analysis and forecasting while feature release is
ongoing and hinder postmortem analysis.

In step 470, computing device 350 determines whether
the degradation degree 330 exceeds threshold 332.

If threshold 332 is exceeded, then, in step 480, computing
device 350 generates alert 334. Alert 334 may be an email,
a text message, a log entry, a database record, or other
indication that may trigger an automatic response such as
routine mitigation or signal a need for manual observation,
investigation, or intervention.

Subset Granularity

FIG. 5 is a block diagram that depicts a web system 500
for monitoring multiple subsets of browser users and client
devices during releases of features, in an embodiment. Web
system 500 may be an implementation of web system 100 or
300, although web systems 100 and 300 may have other
implementations. Web system 500 includes browser users
511-512 and 521-522, and mobile devices 531-532 and
541-542. Although not shown, web system 500 has all of the
components of web systems 100 and 300. For example web
system 500 includes computing device 350.

Browser users 511-512 and 521-522 may be browser
users 321-322. Mobile devices 531-532 and 541-542 may be
examples of client devices 121-122. Mobile devices 531-
532 and 541-542 are wireless computing devices such as a
laptop, a smartphone, a smartwatch, or a mobile data ter-
minal, such as an in-vehicle computer.

Network communication may cause a new feature to
degrade the performance of a web page. For example, a new
feature may have a network communication pattern that
differs from an original communication pattern of a web
page. A new feature may cause more data to be downloaded
to a browser user. A new feature may cause more round trip
communications between a client and one or more servers.
Differences in network communication patterns may be
exaggerated by differences in network infrastructure that
depend on geographic location. For example, the global
Internet is composed of backbones of different capacities

20

30

35

40

45

50

8

and loads. Different points of client presence may have
backhauls of different capacities and loads. Different access
networks may have physical media and fronthauls of dif-
ferent capacities and loads.

Diversity of network infrastructure and load may be
difficult to reproduce in a test laboratory. The performance
suitability of a new feature in diverse locales may be difficult
to predict prior to feature release. There may be a special
need to monitor a performance degradation of a new feature
according to geography. Although subset 501 tracks feature
enablement, further decomposition of a user audience can
meaningfully increase visibility into geographic perfor-
mance.

For example, hemisphere subset 510 has browser users
511-512 that reside in the southern hemisphere of the earth.
Hemisphere subset 520 has browser users 521-522 that
reside in the northern hemisphere. Hemisphere subsets 510
and 520 have a mix of browser users, only some of which
load a web page with a new feature enabled. Web system
500 may use user geolocation to decide which browser users
belong in which of hemisphere subsets 510 and 520. Mecha-
nisms of user geolocation include satellite global positioning
system (GPS), Wi-Fi positioning, 1P address, route tracing,
base station connectivity, and terrestrial positioning based
on signal fade or delay such as triangulation or multilatera-
tion.

Although hemisphere subsets 510 and 520 are shown,
geographic subdivisions of arbitrary size and quantity may
be used. Because geographic differences in browser perfor-
mance are expected, for each geographic subset 510 and
520, web system 500 may use a different threshold when
determining whether to send a geographic-specific perfor-
mance degradation alert.

Geography is not the only source of network-dependent
browser performance. Mobile devices often connect to a
network over an access link of limited capacity, such as a
cellular telephony link. Wireless links are prone to noise,
fade, shadows, and saturation. A mobile device may also
lack adequate processing capacity. There may be a special
need to monitor a performance degradation of a new feature
according to mobility.

A feature may reside on multiple web pages. Performance
degradation of a feature may vary between different web
pages that have the feature. There may be a special need to
monitor a performance degradation of a new feature accord-
ing to multiple web pages.

In one embodiment, web pages A and B are different, but
both have a same feature. Page subset 530 has mobile
devices 531-532 that load web page A. Page subset 540 has
mobile devices 541-542 that load web page B. Page subsets
530 and 540 have a mix of mobile devices, only some of
which load a web page with a new feature enabled. Mobile
devices are self-selecting for inclusion in page subsets 530
and 540 because the user of a client device decides whether
to load page A or page B.

As in web system 300, client devices send performance
data that has a user classifier. In web system 500, a user
classifier either has an indication of which web page A or B
was loaded, or web system 500 may deduce which web page
by further processing of a user classifier. Because differences
are expected in browser performance based on which web
page is loaded, for each of page subset 530 and 540, web
system 500 may use a different threshold when determining
whether to send a page-specific performance degradation
alert.

In another embodiment and although not shown, there are
multiple, (for example, two) new features on one web page.

US 9,479,408 B2

9

Web system 500 may enable both features for browser users.
If web system 500 detects a significant performance degra-
dation, web system 500 may have difficulty determining
which of the two features causes the degradation, because
both features are enabled on the same web page for the same
users.

An alternative mode is for web system 500 to enable each
of the two new features for mutually exclusive subsets 530
and 540 of browser users, such that no user has both features
simultaneously enabled. Each of the two mutually exclusive
subsets of browser users would report its own performance
data to web system 500. Web system 500 may process a user
classifier included within performance data sent by each
browser to determine which web page the browser loaded.
Because differences are expected in browser performance
based on which feature is loaded, for each of page subset 530
and 540, web system 500 may use a different threshold when
determining whether to send a feature-specific performance
degradation alert.

Bottleneck Diagnosis

FIG. 6 depicts timeline 600 of operational phases that
occur during page loading, in an embodiment. A perfor-
mance degradation alert by itself may be insufficient to
troubleshoot performance degradation by a new feature.
Troubleshooting may require knowledge of which phases of
page loading consume excessive time. The world wide web
consortium (W3C) defines navigation timing as a detailed
model of page load timing, which is simplified in timeline
600. Timeline 600 includes phases 610, 620, 630, 640, 650,
and 660. Theses phases represent durations, but are not
drawn to scale and do not represent identical durations.

The first phase of page loading is page request 610, when
a web browser connects to a web server (which may include
establishing a TCP connection) and issues a request to
retrieve a web page. During server processing 620, the web
server receives and handles the request, including dynamic
content generation. At page send 630, the web server trans-
fers the web page to the web browser. Phases 610 and 630
measure network latency. Eventually the web page arrives at
the web browser, shown as receive content 601. The web
browser performs document object model (DOM) parsing
640 on the web page. After parsing, the web browser renders
the web page, which includes cascading style sheet (CSS)
layout 650 and screen painting 660.

A report of a page load time by a web browser may
include measured durations of those loading phases indi-
vidually or as partial sums. An alert threshold, a diagnostic
investigation, or other decision may regard a particular
loading phase or some subsequence of phases. To isolate
network performance, phases before receive content 601 and
especially phases 610 and 630 are relevant. To measure the
performance of browser machinery, phases following
receive content 601 are relevant.

Not all time spent loading a web page is relevant to a user
experience. For example, a web page may be too big to fit
entirely within the viewport of a browser. Page content
positioned outside of the viewport is invisible without
scrolling. In some implementations, time spent retrieving,
parsing, and laying out invisible content does not degrade a
user experience. Measurement of performance degradation
more accurately reflects an impact on a user experience if the
measurement only regards visible content. Page content that
is initially visible without scrolling is considered to be
“above the fold.” If user experience is a primary concern,

10

15

20

25

30

35

40

45

50

55

60

65

10

then client instrumentation may report time spent loading
and rendering page content that is above the fold.

Duration is not the only performance quantity relevant to
a user experience during page loading. An impatient user
may abandon a web page before its loading finishes, usually
by abruptly returning to a prior web page. Pressing a back
button on a web browser accomplishes back navigation.
Client instrumentation may report such back navigation
during page loading. A statistical impact of performance
degradation on a user experience may incorporate an amount
of back navigation. An alert threshold, a diagnostic inves-
tigation, or other decision may regard an amount of back
navigation.

Ramp Up Scheduling

A web system may ramp up a feature by growing a variant
subset of feature users according to an automatic schedule.
For example, a web system may achieve linear ramp up by
enabling a feature for additional users at a rate of a fixed
amount of users per time increment. A linear schedule may
be suboptimal due to lack of sensitivity to goals of ramp up.

When ramp up begins, feature risk is greatest because
knowledge of a performance impact is limited to laboratory
testing. Because risk is high, ramp up may limit harm by
initially enabling a feature for a small subset of browser
users. Harm may be further avoided with careful initial
selection of browser users. For example, ramp up may begin
by selecting only employees and/or close business partners
for inclusion in a feature-enabled subset of browser users.

Because of the statistical nature of performance measure-
ment, when a feature-enabled subset of browser users is
initially small, more time may be needed to achieve suffi-
cient page loads for a performance trend to appear. Ramp up
may be better suited by an automatic schedule that is not
linear. Early in ramp up, a schedule may slowly add small
increments of users to allow time for careful monitoring of
performance degradation. During this phase, performance
may be unstable, and a significant performance degradation
might not manifest until enough users are feature-enabled.
In case of extreme degradation as defined by a threshold, a
web system may suspend an automatic schedule or cancel
the schedule and disable an offending feature.

Eventually a degradation trend may emerge, such as a
stable plateau of performance that is not disturbed by
frequent additions of many users. Once performance stabil-
ity is observed, risk may shift from a diminishing possibility
of performance degradation to an increasing possibility of
audience awareness that a released feature is not yet gener-
ally available and that a web site is essentially inconsistent
across a wide audience. When this shift occurs, a new goal
may be to ramp up quickly to minimize public confusion or
consolidate technical support.

How nonlinearity of scheduling is achieved depends on an
implementation. Nonlinearity may occur according to a
fixed schedule such as parabolic or exponential growth.
Greater sensitivity to evolving conditions may be achieved
with a dynamic schedule. A dynamic schedule may entail a
combination of thresholds and step functions to achieve
different growth rates for different conditions. Feedback
between performance degradation and subset size or growth
rate may be formulaic.

For example, a dynamic schedule may be configured to
match a growth rate to a stability of performance. A schedule
may cause growth of a feature-enabled subset that is
inversely proportional to an increase in a degradation
degree. This lets a web system grow a feature-enabled subset

US 9,479,408 B2

11

of browser users during periods when performance degra-
dation is not increasing. Such a schedule also lets a web
system carefully monitor an increasing performance degra-
dation while holding a feature-enabled subset somewhat
constant.

A schedule may cause growth of a feature-enabled subset
that is inversely proportional to a volatility of a degradation
degree, regardless of whether the degradation is increasing
or decreasing. This enforces achievement of a performance
plateau before growing a feature-enabled subset. It also
suspends subset growth when the plateau is lost.

FIG. 7 depicts charts A and B that track performance
degradation during automatic ramp up, in an embodiment.
The horizontal axis of both charts shows days elapsed. The
start of each day is marked as a morning on the horizontal
axis.

Both charts have a curve that tracks feature-enabled
subset size and a curve that tracks performance degradation.
Although the scale of the vertical axes of charts A and B are
dissimilar, both charts show the same curve of performance
degradation that peaks at 2% during morning 3. However the
subset size curves differ between the charts because the
charts exhibit subset growth according to different dynamic
schedules.

Chart A shows a cautious schedule that scales subset
growth according to low volatility of performance degrada-
tion. During the second and third days of chart A, perfor-
mance degradation is unstable, and an automatic schedule
accordingly suspends subset growth during the second and
third days. A result is that at the start of the fifth day, the
cautious schedule has achieved a subset size of only six
million browser users. Chart B achieves 25 million browser
users in the same time with the same performance degra-
dation curve, because its automatic schedule allows subset
growth so long as performance degradation is not increas-
ing, even if performance is unstable.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more computing devices.
The computing devices may be hard-wired to perform the
techniques, or may include digital electronic devices such as
one or more application-specific integrated circuits (ASICs)
or field programmable gate arrays (FPGAs) that are persis-
tently programmed to perform the techniques, or may
include one or more general purpose hardware processors
programmed to perform the techniques pursuant to program
instructions in firmware, memory, other storage, or a com-
bination. Such computing devices may also combine custom
hard-wired logic, ASICs, or FPGAs with custom program-
ming to accomplish the techniques. The computing devices
may be desktop computer systems, portable computer sys-
tems, handheld devices, networking devices or any other
device that incorporates hard-wired and/or program logic to
implement the techniques.

For example, FIG. 8 is a block diagram that illustrates a
computer system 800 upon which an embodiment of the
invention may be implemented. Computer system 800
includes a bus 802 or other communication mechanism for
communicating information, and a hardware processor 804
coupled with bus 802 for processing information. Hardware
processor 804 may be, for example, a general purpose
Microprocessor.

Computer system 800 also includes a main memory 806,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 802 for storing information

10

15

20

25

30

35

40

45

50

55

60

65

12

and instructions to be executed by processor 804. Main
memory 806 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 804. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 804, render computer system 800 into a
special-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 800 further includes a read only
memory (ROM) 808 or other static storage device coupled
to bus 802 for storing static information and instructions for
processor 804. A storage device 810, such as a magnetic disk
or optical disk, is provided and coupled to bus 802 for
storing information and instructions.

Computer system 800 may be coupled via bus 802 to a
display 812, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 814, includ-
ing alphanumeric and other keys, is coupled to bus 802 for
communicating information and command selections to
processor 804. Another type of user input device is cursor
control 816, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 804 and for controlling cursor
movement on display 812. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.

Computer system 800 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 800 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 800 in response to
processor 804 executing one or more sequences of one or
more instructions contained in main memory 806. Such
instructions may be read into main memory 806 from
another storage medium, such as storage device 810. Execu-
tion of the sequences of instructions contained in main
memory 806 causes processor 804 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical or magnetic disks, such as storage device 810.
Volatile media includes dynamic memory, such as main
memory 806. Common forms of storage media include, for
example, a floppy disk, a flexible disk, hard disk, solid state
drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM,
NVRAM, any other memory chip or cartridge.

Storage media is distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates in transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 802. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

US 9,479,408 B2

13

Various forms of media may be involved in carrying one
or more sequences of one or more instructions to processor
804 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 800 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 802. Bus 802 carries the data to main memory
806, from which processor 804 retrieves and executes the
instructions. The instructions received by main memory 806
may optionally be stored on storage device 810 either before
or after execution by processor 804.

Computer system 800 also includes a communication
interface 818 coupled to bus 802. Communication interface
818 provides a two-way data communication coupling to a
network link 820 that is connected to a local network 822.
For example, communication interface 818 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
818 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 818 sends and receives
electrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types of information.

Network link 820 typically provides data communication
through one or more networks to other data devices. For
example, network link 820 may provide a connection
through local network 822 to a host computer 824 or to data
equipment operated by an Internet Service Provider (ISP)
826. ISP 826 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 828. Local
network 822 and Internet 828 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 820 and through communication interface 818,
which carry the digital data to and from computer system
800, are example forms of transmission media.

Computer system 800 can send messages and receive
data, including program code, through the network(s), net-
work link 820 and communication interface 818. In the
Internet example, a server 830 might transmit a requested
code for an application program through Internet 828, ISP
826, local network 822 and communication interface 818.

The received code may be executed by processor 804 as
it is received, and/or stored in storage device 810, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

10

15

20

25

30

35

40

45

50

55

60

65

14

What is claimed is:
1. A method comprising:
sending a first version of web content to a first plurality of
client devices, wherein the first version of the web
content does not include a particular feature;

receiving, from each client device of the first plurality of
client devices, first performance data that indicates
performance of said client device with respect to pro-
cessing the web content;
sending a second version of the web content to a second
plurality of client devices that is different than the first
plurality of client devices, wherein the second version
of the web content includes the particular feature;

receiving, from each client device of the second plurality
of client devices, second performance data that indi-
cates performance of said client device with respect to
processing the web content;

comparing the first performance data with the second

performance data to determine a difference between a
processing metric associated with the first version of
the web content and a processing metric associated
with the second version of the web content;

wherein the processing metric associated with the first

version and the processing metric associated with the
second version comprise a statistic of content load
times;

wherein the content load times do not incorporate time

spent after completion of rendering all visible content;
wherein the method is performed by one or more com-
puting devices.
2. A method comprising:
sending a first version of web content to a first plurality of
client devices, wherein the first version of the web
content does not include a particular feature;

receiving, from each client device of the first plurality of
client devices, first performance data that indicates
performance of said client device with respect to pro-
cessing the web content;
sending a second version of the web content to a second
plurality of client devices that is different than the first
plurality of client devices, wherein the second version
of the web content includes the particular feature;

receiving, from each client device of the second plurality
of client devices, second performance data that indi-
cates performance of said client device with respect to
processing the web content;

comparing the first performance data with the second

performance data to determine a difference between a
processing metric associated with the first version of
the web content and a processing metric associated
with the second version of the web content;

wherein the processing metric associated with the first

version and the processing metric associated with the
second version comprise a statistic of content load
times;

wherein the content load times include a plurality of times

spent;

wherein each time spent of the plurality of times spent

measures time spent in a separate phase of content
loading;

wherein the method is performed by one or more com-

puting devices.

3. The method of claim 2 wherein the content load time
includes a measurement of at least one of: time spent before
the client device begins receiving web content or time spent
after the client device begins receiving web content.

US 9,479,408 B2

15

4. The method of claim 2 wherein the processing metric
associated with the first version and the processing metric
associated with the second version comprise an amount of
back navigation during content loading.

5. The method of claim 2 wherein the first plurality of
client devices and the second plurality of client devices
include consist of mobile devices.

6. The method of claim 2 wherein the first performance
data and second performance data comprise a measurement
of resource consumption of at least one of: processor cycles,
memory, or energy.

7. The method of claim 2 wherein the first performance
data and second performance data comprise a measurement
of an amount of at least one of: virtual memory swapping,
browser cache thrashing, disk usage, or screen flicker.

8. The method of claim 2 wherein the first version of the
web content does not include an implementation of the
particular feature or the first version of the web content
includes a disabled implementation of the particular feature.

9. A method comprising:

sending a first version of web content to a first plurality of

client devices, wherein the first version of the web

content does not include a particular feature;

receiving, from each client device of the first plurality of
client devices, first performance data that indicates
performance of said client device with respect to pro-
cessing the web content;

sending a second version of the web content to a second

plurality of client devices that is different than the first

plurality of client devices, wherein the second version
of the web content includes the particular feature;

receiving, from each client device of the second plurality
of client devices, second performance data that indi-
cates performance of said client device with respect to
processing the web content;

comparing the first performance data with the second

performance data to determine a difference between a

processing metric associated with the first version of

the web content and a processing metric associated
with the second version of the web content;

comparing a first abandonment amount for the first plu-
rality of client devices to a second abandonment
amount for the second plurality of client devices,
wherein the first abandonment amount and the second
abandonment amount measure an amount of abandon-
ment, by users of client devices, of an artifact that is
one of: a web page or a virtual shopping cart;

wherein the method is performed by one or more com-
puting devices.

10. A system comprising:

one or more web servers that send:

a first version of web content to a first plurality of client
devices, wherein the first version of the web content
does not include a particular feature, and

a second version of the web content to a second
plurality of client devices that is different than the
first plurality of client devices, wherein the second
version of the web content includes the particular
feature; and

one or more monitor computers that:

receive, from each client device of the first plurality of
client devices, first performance data that indicates
performance of said client device with respect to
processing the web content;

receive, from each client device of the second plurality
of client devices, second performance data that indi-

10

15

20

25

30

35

40

45

50

55

60

65

16

cates performance of said client device with respect
to processing the web content; and
compare the first performance data with the second
performance data to determine a difference between
a processing metric associated with the first version
of the web content and a processing metric associ-
ated with the second version of the web content;
wherein the processing metric associated with the first
version and the processing metric associated with the
second version comprise a statistic of content load
times;
wherein the content load times include a plurality of
times spent;
wherein each time spent of the plurality of times spent
measures time spent in a separate phase of content
loading.
11. One or more non-transitory computer-readable media
containing instructions, that when executed by one or more
processors, cause:
sending a first version of web content to a first plurality of
client devices, wherein the first version of the web
content does not include a particular feature;

receiving, from each client device of the first plurality of
client devices, first performance data that indicates
performance of said client device with respect to pro-
cessing the web content;
sending a second version of the web content to a second
plurality of client devices that is different than the first
plurality of client devices, wherein the second version
of the web content includes the particular feature;

receiving, from each client device of the second plurality
of client devices, second performance data that indi-
cates performance of said client device with respect to
processing the web content;

comparing the first performance data with the second

performance data to determine a difference between a
processing metric associated with the first version of
the web content and a processing metric associated
with the second version of the web content;

wherein the processing metric associated with the first

version and the processing metric associated with the
second version comprise a statistic of content load
times;

wherein the content load times include a plurality of times

spent;

wherein each time spent of the plurality of times spent

measures time spent in a separate phase of content
loading.

12. The one or more non-transitory computer-readable
media of claim 11 wherein the processing metric associated
with the first version and the processing metric associated
with the second version comprise a statistic of content load
times.

13. The one or more non-transitory computer-readable
media of claim 12 wherein the content load time includes a
measurement of at least one of: time spent before the client
device begins receiving web content or time spent after the
client device begins receiving web content.

14. The one or more non-transitory computer-readable
media of claim 12 wherein the content load time does not
incorporate time spent after completion of rendering all
visible content.

15. The one or more non-transitory computer-readable
media of claim 11 wherein the processing metric associated
with the first version and the processing metric associated
with the second version comprise an amount of back navi-
gation during content loading.

US 9,479,408 B2

17

16. The one or more non-transitory computer-readable
media of claim 11 wherein the first performance data and
second performance data comprise a measurement of
resource consumption of at least one of: time, processor
cycles, memory, or energy.

17. The one or more non-transitory computer-readable
media of claim 11 wherein the first performance data and
second performance data comprise a measurement of an
amount of at least one of: virtual memory swapping, browser
cache thrashing, disk usage, or screen flicker.

#* #* #* #* #*

10

18

